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Abstract: The dynamics of a car exhaust system is under observation, the vibration simulation being of 

particular interest. For rapid evaluation of the vertical vibrations of the system a lumped dynamic model 

is derived and integrated over time. Some of the system parameters are measured, others are estimated by 

using comparisons between measurements and finite elements analysis and some are estimated. The 

hanger rigidity coefficient is derived from the frequency response function measured by using the 

impulsive method on a system consisting of the hanger stretched by a gravity load. The system of 

differential equations is integrated and the natural frequencies are derived. 
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1. INTRODUCTION   
 

 The automobile exhaust system is primarily 

used to silence the noise generated by the high 

pressure residual gases produced by the engine 

and to drive away from the habitacle these 

gases which are toxic and at a high temperature. 

One of the main exterior noise source of the 

autovehicle is the exhaust system. The residual 

gases due to the periodic pressure pulsation are 

producing vibrations in the exhaust system 

structure, which associated to the ones induced 

by the hanged structure are transmitted to the 

car body. On the other side the driveline system 

is the car main source of vibration and noise, 

which is connected to the vehicle body (frame) 

through bearings, isolators and mounts. 

Conventional rubber mounts together with 

hydraulic, semi active and active mounts are 

proper used in order to manage the complex 

vibration interaction between the driveline and 

the car frame. 

 Starting from the engine exhaust manifold 

the most important parts of a typical exhaust 

system are the flex decoupler, the catalyzer, the 

front silencer or resonator, rear silencer or 

muffler and the 

connecting pipe 

segments between 

them. The noise of 

the exhaust system is 

produced directly by 

the gasses at the 

tailpipe orifice and is 

radiated from the 

structural shells that 

build the components 

of the structure. At 

the end through the 

tailpipe the exhaust 

gasses are released 

out. 50% of the 

exhaust noise is 

generated at the 

tailpipe orifice. The 

mufflers are in 

charge with the noise 

reduction. The front 

one is a reactive 

silencer while the 

Fig. 1. The exhaust 

 system discrete model 
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rear muffler can be as well dissipative in 

parallel to reactive. The catalytic converter 

converts exhaust gasses to a less harmful gas. 

The exhausted gas is analyzed and is 

participating to the combustion and emission 

control.  

 The exhaust system is hung from the chassis 

through elastomeric hungers placed in proper 

locations in the effort to manage the vibrations 

and to not transmit structural vibrations to the 

car body. The locations are influenced by the 

stiffness, the mass distribution of the exhaust 

system and the whole system dynamics. The 

range of the excitation frequencies coming 

from the engine and the idle frequency are also 

of great importance. The hunger mount points 

are important in order to minimize the 

transferred vibration from the exhaust system to 

the car frame. 

 For the estimation of the maximum 

excitation frequency the operating engine speed 

(for instance 4600 rpm/60) is multiplied by the 

engine firing order and the number of cylinders. 

 The dynamics in vertical plane of a 

simplified exhaust system model will be 

observed in the sequel. 

 

2. THE DYNAMICAL MODEL 

 

 A simplified dynamical model of the whole 

exhaust system in vertical direction has been 

derived in a previous work [4]. The system of 

four differential equations has been written in 

compact matrix form: 

0=++ KQQDQM &&&    (1) 

 Explicitly the inertial and symmetric matrix 

is: 
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which is multiplied by the generalized 

acceleration vector: 
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 The viscous damping matrix D is of the 

form: 
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and is multiplied by the generalized velocity 

vector: 

[ ]T

m zzzzQ 321 &&&&& =  

 The stiffness matrix K, is of the form: 
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which is multiplied by the generalized 

coordinates vector: 

[ ]T

m zzzzQ 321=     (5) 

 In the sequel the parameters of the 

dynamical model are measured or estimated 

and the system is integrated. 

 

3. HANGER PROPERTIES 

 

3.1 The experimental set-up 

 The exhaust system is hung from the chassis 

by using exhaust mounts placed in proper 

locations in the 

effort to manage the 

vibrations and to 

not transmit 

structural vibrations 

to the car body. 

 A static 

determination has 

been performed by 

loading the exhaust 

mount with 

determined loads 

and measuring the 

displacement. In 

this article a 

dynamic procedure 

will be observed by 

measuring Fig. 2. The hanger 

measurement set up 
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frequency response functions (FRFs) in order to 

derive the elasticity coefficient of the hanger. 

The system shown in Figure 2 is assimilated to 

a one degree of freedom system in the lowest 

frequency band of interest. The exhaust mount 

is assimilated to a spring having a viscous 

absorber in parallel. By using a metallic frame a 

known mass is hung stretching the rubber of the 

hanger, similar to the real case in which the 

exhaust system is hanging under the car.    

 

3.2. FRF measurement 

 A portable acquisition system based on a 

National Instruments USB, 24-bit, four 

acquisition channels board, has been used. 

Frequency response functions (FRFs) have 

been measured for different loads.   

 For the FRF measurement, the impulsive 

method has been used [6]. The impact hammer 

was connected to the first channel of the 

acquisition system and was used to excite the 

structure. A PCB mini-accelerometer of 1.5 g 

placed close to the impact location, as depicted 

in Figure 2, is connected to the second channel 

of the acquisition system in order to record the 

response of the structure. The schematic 

overview of the experimental test set-up and 

FRF derivation is shown in Figure 3. For the 

hung mass of 2, 4 and 8 kg, the FRFs 

[(m/s2)/N] are presented in Figures 4, 5 and 6. 

 The frequencies of interest are low, hence 

acquisition sampling rate: 2500, the block size 

5000, resulting the acquisition time of 2s. The  

FRF averaging is 4. By using relations (1), the 

resulted k values are presented in Table 1. 

mk /0 =ω , 
222

0 4 fmmk πω ==   (1) 

Table 1 

 

3.3. Finite element validation 

 The hanger geometry is mesh by using solid 

finite elements, as can 

be seen in Figure 7.  

The upper hole is 

immobile and to the 

lower bolt a force in 

vertical direction is 

applied. The applied 

force equals the 

gravity force like in 

the experimental 

approach.  

 Changing the 

Young modulus of the 

rubber in finite 

element simulation in 

order to have similar 

results for the 

experiment and the 

simulation the following value is resulting: 

E=5,2 MPa. 

Hung 

mass [kg] 

FRF: first peak 

frequency [Hz] 
k [N/m] 

2 21.5 36 498 

3 18 38 373 

4 16 40 426 

5 15 44 413 

6 14 46 427 

7 13 46 703 

8 12.5 49 348 

Fig. 3. FRF measurement 

Fig. 7. The hanger 

FEA 

Fig. 4. FRF 2 kg, peak at 21,5 Hz 

Fig. 5. FRF 4 kg, peak at 16 Hz 

FRF derivation 

Fig. 6. FRF 8 kg, peak at 12,5 Hz 

FRF derivation 
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 Other rubber properties used in the 

simulation were 0.48 for the Poisson coefficient 

and 1.1e-9 Tons/mm^3 for the density. 
 

  

4. THE SIMULATION OF THE EXHAUST 

SYSTEM LUMPED MODEL  

 

 The total mass of the system is 12.5kg which 

can be divided in four lumped mass: m0=0.5 kg 

the mass of the pipe close to the engine, 

m1=4kg expressing mainly the mass of the 

catalyzer, m2=4kg representing mainly the 

mass of the intermediate mufflers and m3=4kg 

mainly the mass of the final muffler. m0 will be 

attached to the engine mass mm =80kg resulting 

+mm =80.5kg.  

 For the determination of the damping ratio 

(ζ) associated to the three hangers (k1, k2 and 

k3) an experimental approach has been used. A 

hung mass of 3,9 kg is attached, stretching the 

rubber support. From the frequency response 

function the resonant peak at 15,5Hz which is 

well  separated, can be used for the estimation 

of the damping ratio value ζ of the hanger.   

0ω
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2

∆
≈ ,  06.0

5,15
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=

⋅
≈

2
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 The damping ratio ζ associated to the three 

hangers can be determined as well from the 

logarithmic decrement δ of the damped 

vibration recorded on a vibrogram of the same 

system: 
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2
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km1, k12, k23 are to be determined from the 

first eigenvalue tuning of the lumped system 

and the modal analysis of the finite element 

model.  

 For the vertical stiffness km of the engine 

support some aspects of the isolation design are 

to be mentioned. The power plant is placed 

typically by three mounts on a subframe which 

is connected to the vehicle frame. The mounts 

number varies between two to five to different 

power plants. When two mounts are used a 

free-free roll axis  is present and one to two 

restrictors of the rotations of the power plant 

about the roll axis [9]. The mount system 

sustain the weight of the power plant (several 

hundred kilograms) and isolate the effects of 

the structural vibrations, forces from 

accelerations/ decelerations, cornering, impact 

excitations etc. Mounts are made of rubber and 

can be assimilated to a linear spring in parallel 

with a linear viscous damper. Let us take a total 

stiffness of 800 N/mm for the mount in the 

vertical direction. 

 The Matlab application for the system 

integration is as follows. 

t0=0;tf=2; %int. time 

    %initial conditions: m, m/s 

X0=[1.5*10^-3 5*10^-3  -10^-3  0  0 0 0 0]'; 

 global K M D invM; 

mm=80.5;m1=4;m2=4;m3=4; 

k1=40426; k2=k1; k3=k1;%N/m; 

km=800*10^3; %N/m;  

km1=10*k1; k12=km1; k23=km1; 

 

 M=[mm 0 0 0;0 m1 0 0;0 0 m2 0; 0 0 0 m3];  

 K=[km1+km   -km1          0         0; 

     -km1  km1+k12+k2     -k12        0; 

     0        -k12     k12+k2+k23  -k23; 

     0          0      -k23      k23+k3]; 

c1=5; c2=c1; c3=c1;  

cm=100 % Ns/m;  

cm1=0,5*c1; c12=cm1; c23=cm1; 

 D=[cm1+cm   -cm1          0         0; 

     -cm1  cm1+c12+c2     -c12        0; 

     0        -c12     c12+c2+c23  -c23; 

     0          0      -c23      c23+c3]; 

 invM=M^-1; 
  

[t,X]=ode45('s_prim2', [t0 tf], X0); 

subplot(211);   

plot(t,X(:,1:4),'linewidth',1.6); grid on; 

Fig. 8. Half power method 
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subplot(212);  

plot(t,X(:,5:8),'linewidth',1.6); grid on; 

 

 The first parameter of the function ode45 is 

the name of a called function which definition 

is not presented here.  

 The displacement of the four masses in time 

are depicted in Figure 9. 

 The eigenvalues and the natural frequencies 

of the simplified system can be obtained by 

solving the eigenvalue problem. By replacing a 

global harmonic proposed solution in the 

system of differential equations, results: 

 0)(0 22 =⋅−=− uMKorMuKu ωω        (3) 

 The set of the homogeneous algebraic 

equations (3) has the unknown vector u. 

Considering 2ωλ = as a parameter, one gets: 

MuKu λ=                                (4) 

known as the eigenvalue problem when trying 

to determine λ values for which the system (3) 

has nontrivial solutions. By solving for λ and 

nontrivial solution (u≠0), the following 

characteristic equation (5) is obtained: 

0)det( =− MK λ                   (5) 

where λr (r=1,2…,n) values are the eigenvalues 

(or characteristic values) of the system.  

 For the exhaust system chosen parameters 

the four natural frequencies (ω/2/π) calculated 

by using Matlab are: 

f1=15.88 Hz, f2=28.82 Hz, 

f3=65.43 Hz, f4=92.64 Hz. 

 For dummy initial conditions when all 

modes of vibrations are acting, FFT can be 

applied to the displacement values associated to 

the displacement of each of the system lumped 

mass. For each FFT graph the same frequency 

peaks are observed but with different 

amplitudes indicating a particular participation 

of each vibration mode to the resulted system 

motion. 

 

4. CONCLUSIONS 

 

 An exhaust system and the engine are 

modelled by using lumped masses. The degrees 

of freedom are observing the masses 

displacements in vertical direction. Some of the 

system parameters are measured, others are 

estimated by using comparisons between 

measurements and finite elements analysis and 

the rest are estimated. Further effort in tuning 

the model and the real system is necessary. A 

Matlab application is written in order to 

numerical integrate the system of differential 

equations and to calculate the natural 

frequencies of the model. The simplified 

models can be utilized for a rapid estimation of 

the system vibrations in vertical direction. 
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Modelul unui sistem de evacuare cu mase concentrate. Identificare si simulare. 

 
Rezumat: Articolul abordează modelarea dinamică prin mase concentrate a unui sistem de evacuare, inclusiv motorul 

automobilului. Este observat sistemul celor patru ecuaţii diferenţiale de ordinul doi, mişcarea maselor fiind pe direcţie 

verticală. Sunt estimaţi parametrii inerţiali, de rigiditate şi de amortizare vâscoasă. Se acordă importanţă crescută 

suporţilor de cauciuc prin care sistemul de evacuare este atârnat de şasiu. Suportul este întins cu diferite forţe măsurându-

se funcţia de răspuns în frecvenţă prin excitaţie impulsivă pe direcţie verticală. Este folosit un ciocan de impact cu senzor de 

forţă, un miniaccelerometru pentru măsurarea răspunsului, un sistem de echiziţie cu eşantionare simultană pe cele două 

canale de măsurare şi o aplicaţie Labview. Din primul vârf al modulului FRF este estimat coeficientul de rigiditate şi 

raportul de amortizare vâscoasă al suportului elastic. Suportul este de asemenea modelat cu elemente finite de volum, este 

simulată o întindere statică iar prin comparaţie cu întinderea experimentală se estimează modulul lui Young al cauciucului 

din care este confecţionat suportul. Sistemul de ecuaţii diferenţiale este integrat printr-o aplicaţie Matlab pentru condiţii 

iniţiale impuse. Sunt determinate numeric de asemenea frecvenţele naturale ale sistemului analizat. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iulian LUPEA, Prof. Ph.D. Technical University of Cluj-Napoca, Department of Mechanical 

Systems Engineering, 103-105 Muncii Blvd., 400641 Cluj-Napoca, +40-264-401691, e-mail: 

iulian.lupea@mep.utcluj.ro ; www.viaclab.utcluj.ro 

 


